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Use of Monoclonal and Polyclonal
Antibodies Against DNA Adducts for the
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and in Single Cells
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Interaction of genotoxic chemicals with their intracellular target, i.e., DNA, may result in the formation
of covalent adducts. Various methods have been developed to estimate exposure to genotoxic chemicals
by means of molecular dosimetry of DNA adducts. Such experiments have generally been carried out with
radiolabeled genotoxicants administered in vitro to cultured cells or in vivo to laboratory animals. Bio-
monitoring of human exposure to genotoxic chemicals requires methods to detect very small quantities
of nonradioactive DNA adducts in limited amounts of sample.
Attention has been devoted to the development of immunochemical techniques in which specific DNA

adducts can be detected with antibodies. The level of sensitivity achieved in these experiments renders
these methods applicable for human biomonitoring. When suitable antibodies are available, the immu-
nochemical approach enables one to analyze various types of adducts separately, and to discriminate
between irrelevant (e.g., quickly repairable) and relevant lesions (key lesions) with respect to biological
end points such as mutation induction and cancer.

Polyclonal and monoclonal antibodies were used for the detection of DNA adducts in animal and human
tissue. Adducts were measured in DNA from various organs of rats treated with the liver carcinogen 2-
AAF. Human exposure to genotoxic agents was studied by the measurement ofDNA adducts in blood cells
from patients treated with the genotoxic cytostatic cisplatin. Also, the development is described of a system
to detect and quantitate DNA adducts at the single-cell level by means of immunofluorescence microscopy,
which allows the analysis of small samples of human tissue with preservation of cell morphology.

Introduction
In chemical carcinogenesis, interaction of a reactive

chemical agent with DNA-resulting in the formation
of a covalent adduct-has been recognized as an early
and possibly crucial event during the onset of the car-
cinogenic process (1,2). Demonstration of adduct for-
mation is direct proof that interaction between the
genotoxic chemical, often after metabolic conversion into
a reactive metabolite (3), and its intracellular target has
occurred. The total amount of DNA adducts can be re-
garded as a direct measure of the dose to which the
target has been exposed. This target dose may differ
considerably from the exogenous dose, i.e., the concen-
tration of the agent to which the organism as a whole
has been exposed, because of the various factors that
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modulate the extent of adduct formation, such as met-
abolic activation or detoxification, accumulation, or ex-
cretion (4,5). The balance between these processes may
be quite different between organs and species (6). In
the human situation, exposure may result from the oc-
currence of carcinogenic agents at the workplace or in
the general environment. Furthermore, the effects may
be strongly influenced by highly variable factors such
as diet, smoking habits and the use of medication (7-
9). Measurement of the target dose will therefore pro-
vide a more accurate estimate of biologically effective
exposure (10).
Once the DNA damage has been inflicted, the action

of repair enzymes and their effectiveness will deternine
whether or not a lesion will persist and hence become
potentially harmful (11). It is generally believed that
mutations in DNA mainly originate from damage that
is left unrepaired or is repaired in an erroneous way.
Mutations in somatic cells are thought to represent an
early stage in carcinogenesis (12,13), whereas mutations
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in germ cells may give rise to heritable diseases, among
which there are some tumors of a hereditary nature
(14). In several cases, the extent of formation of DNA
adducts has been correlated in animal experiments with
the carcinogenic potency of the compounds studied
(15,16). In other instances, no such correlation could be
found (17). The assumption was made that, in these
cases, secondary factors such as tumor promotion and/
or progression ultimately determine whether a tumor
will develop or not. In any case, knowledge about the
induction and persistence or disappearance of specific
DNA adducts will serve as a basis for the study of the
relation between DNA damage and biological endpoints
such as mutation induction and cancer. For obvious rea-
sons, much of this knowledge will have to be derived
from animal experiments. At present, methods are being
developed which will permit analysis of DNA damage
in human samples. Currently, such biomonitoring data
may be used only to indicate that human exposure has
taken place. Interpretation of these results in terms of
a possible health risk for the exposed group or individual
will require further experimentation and comparison
with animal data (18).

In animal studies or in experiments with cultured
cells, analysis of DNA adduct formation can be carried
out by the use of radiolabeled genotoxicants (19). The
amount of adducts can be determined directly on the
basis of radioactivity present in isolated total DNA.
Distinct types of adducts can be measured after chro-
matographic separation of enzymatically degraded DNA
or through analysis of depurination products (20-22).
Furthermore, adduct formation can sometimes be es-
tablished by the measurement of radiolabeled excretion
products in urine samples (23). In recent years, several
methods have been developed to measure the presence
of nonradioactive adducts in DNA, e.g., by means of
postlabeling and chromatographic analysis of mononu-
cleotide adducts obtained after enzymatic digestion (24),
or immunochemically, with specific antibodies against
the adducts (25). With these techniques, monitoring of
human exposure to genotoxic agents will become
possible.

This paper deals with some recent experiments in
which polyclonal and monoclonal antibodies are used for
immunochemical detection of DNA adducts in animal
tissues and in human blood cells. Also, the development
of a system to detect and quantitate adducts at the
single-cell level will be illustrated.

Use of Polyclonal and Monoclonal
Antibodies against DNA Adducts

Various sensitive immunoassays are now in use to
detect DNA damage at extremely low levels (26-29).
The sensitivity of immunochemical techniques depends
largely on the affinity of the antibodies for their re-
spective antigens or haptens. Also, a high antigen spec-
ificity is required for the selective detection of one type
of adduct among other adducts or unmodified DNA com-

ponents. Polyclonal and monoclonal antibodies of high
specificity and affinity toward DNA adducts have been
obtained (30). In an earlier publication (31), we dis-
cussed the heterogeneity of conventional polyclonal
antisera with respect to specificity and affinity. The hy-
bridoma technique (32) permits the isolation of mono-
clonal antibodies which are structurally and functionally
homogeneous. This property is essential in experiments
that require a low background antibody binding, such
as the detection of a small amount of adducts among a
vast excess ofunmodified DNA components (see below).
Recently, a method was developed in our laboratory to
select and isolate hybrid cells that produce monoclonal
antibodies of a desired specificity, by means of rosette
formation (33) (Fig. 1). This method has the potential
to select antibodies according to their affinity. An ap-
plication of this selection technique is shown in a later
section of this paper.

Different approaches towards immunochemical de-
tection of DNA damage can be discerned. The first ap-
proach involves isolation of DNA from the exposed
cultured cells or tissue and direct immunochemical de-
tection of the adducts within the purified DNA or in an
enzymatic digest thereof (26). Secondly, after digestion
or depurination of the DNA, the products can be sep-
arated by means of chromatographic techniques, prior
to immunochemical analysis (34,35). Under optimal con-
ditions these techniques allow complete separation of
the DNA adducts from other material, which results in
a large decrease or even virtual elimination ofundesired
background antibody binding to the latter during the
subsequent immunoassay carried out on the eluted frac-
tions. A third approach aims at detection of DNA dam-
age at the level of the single cell. In this case, exposed
cells are fixed, and the DNA is denatured and some-
times deproteinized to enhance the accessibility of the
adducts. The antibody must be able to bind adducts
within the fixed DNA structure. Binding to nonmodified
stretches of DNA and to cytoplasmic material should
be minimal. This detection method can be applied to
cells that are fixed while attached to glass slides or free
in suspension (36,37). Finally, reports have appeared
on visualization of adducts in individual DNA molecules
by means of immuno-electron microscopy (38).

In the methods mentioned above, the antigen is ex-
posed to the antibody in different structural environ-
ments (within the DNA, as free DNA adduct, etc). In
principle, therefore, each of these approaches could re-
quire a different type of antibody. It may well be, that
a polyclonal antiserum is sufficiently heterogeneous to
be suitable for each type of immunodetection. However,
monoclonal antibodies have a unique but restricted set
of properties and the optimal antibody must be selected
for the particular problem studied. In this connection it
is worth mentioning that high affinity should not always
be regarded as the only selection criterion to obtain the
most suitable antibody preparation. It is also useful to
design a hybridoma screening system that mimics the
experimental conditions during the actual application of
the antibody.
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FIGURE 1. Selection of specific antibody-producing hybrid cells by means of rosette formation. Hybrid cells formed after fusion of myeloma
cells with spleen cells from an immunized mouse were incubated in the presence of sheep erythrocytes, coated with hapten. Depending on
the incubation conditions, the red blood cells formed rosettes, either by adhering to the antigen receptors on the surface of the hybrid cells
or by forming a dense layer of red blood cells, due to the agglutinating action of the excreted antibodies. In both instances, single rosettes
can be easily discerned, removed from the suspension with a micropipette, and grown monoclonally. In this way pure antibody-producing
clones can be obtained from the fusion mixture in a single step. The picture shows rosette-forming hybrid cells, producing antibodies against
the AAF-guanosine adduct (31). Experimental details of this selection technique have been published (33).

Some ofthese considerations will be illustrated below.

Organ-Specific Induction of AAF
DNA Adducts in 2-AAF-Treated Rats
From animal carcinogenicity studies it is known that

carcinogenic compounds may differ widely in their pat-
tern of cancer induction sites within the animal or in
animals of different species (39). Organ specificity of
genotoxic chemicals may be due to differences in the
capacity of the chemicals to reach the various organs or
to differences between the organs in their capacity to
bioactivate the chemicals or to repair the DNA lesions.
By studying organ specificity of a certain DNA lesion
one may obtain insight into the relevance of this lesion
with respect to, e.g., tumor induction in various organs.
Such a study can be useful in attempts to extrapolate

animal data to man, for which no justifiable method is
as yet available (40).
We have studied the induction of lesions in DNA from

various organs of rats, exposed (PO) to various dosages
of 2-acetylaminofluorene (2-AAF), which is a specific
liver carcinogen in rats. Polyclonal antibodies (from rab-
bit) directed against AAF-modified guanosine (31) were
used to measure the amount of AAF adducts in DNA
from liver, spleen, and white blood cells. Only in liver
DNA could extensive dose- and time-dependent induc-
tion of these adducts be detected (Table 1). No detect-
able amount of AAF damage was present in DNA from
spleen or white blood cells.
To investigate whether induction of AAF damage in

various organs is affected by the route of administra-
tion, a pilot experiment was carried out, in which the
agent was administered by means of IP injection. Pre-
liminary results show that also in this case, no adducts
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Table 1. AAF adducts in liver DNA isolated from
2-AAF-treated rats.a

AAF adducts/108 nucleotides
After After After After

Dose, ,umole/ 2 hr 6 hr 24 hr 48 hr
kg

o 0 0 0 0
0.45 ND ND ND ND
4.5 2 20 50 15

45 10 40 300 800
900 40 160 420 930
aRats were treated (PO) with 2-AAF, dissolved in DMSO (5 mL/

kg). After 2, 6, 24, and 48 hr, animals were killed; DNA was isolated
from the livers and purified by means of CsCl equilibrium density
gradient centrifugation. The number of AAF-adducts (given as num-
ber of adducts/108 nucleotides) was determined immunochemically in
a competitive ELISA (58). ND = not detectable; the detection limit
in this assay is 1 adduct/108 nucleotides.

could be detected in spleen DNA. In the liver, a lower
level of AAF-DNA adducts was observed than after
oral administration of the chemical.

Biomonitoring of Genotoxic Damage
in Humans: Analysis of DNA from
Cancer Patients Treated with
Genotoxic Cytostatics

Extrapolation from animal carcinogenicity studies to
the human situation is very difficult, not only because
of the variation observed in cancer induction in various
animal organs and species, but also because large dif-
ferences have been demonstrated among human indi-
viduals in their metabolizing enzymes and their response
to foreign chemicals. Some of these differences are par-
tially of genetic origin (41). It is therefore important to
gather as much information as possible from those cases
in which humans are exposed to genotoxic agents. One
possibility is to study the effects of antineoplastic drugs
used in cancer chemotherapy. Several of these agents
are genotoxic, and it is assumed that their antitumor
activity is based on their interaction with DNA. Pa-
tients who receive this type of drug often respond quite
differently to the treatment. Therefore, knowledge about
the DNA damage induced by genotoxic antitumor agents
may help to design a dosing regimen for individual pa-
tients, so as to minimize the clinical side effects and
improve the therapy. Such studies could also lead to
the synthesis of novel analogs of the drug, displaying
equivalent or higher antitumor activity and causing less
severe side effects.
We have studied the various adducts induced in

DNA-in vitro and in cultured prokaryotic and eukar-
yotic cells-by the antitumor agent (cis)-diamminedi-
chloroplatinum II (cis-DDP or cisplatin) (42). The adducts
were isolated by means of anion exchange chromatog-
raphy of an enzymic digest of (cis)-DDP-treated DNA,

and several adducts could be identified by means ofhigh-
frequency proton NMR spectroscopy (43,44). A widely
used method to analyze platinum-containing material is
atomic absorption spectroscopy (AAS). The detection
limit of this technique is often not sufficiently low to
permit detection of DNA-bound platinum in, e.g., mam-
malian cells treated with cis-DDP in dosages that allow
> 10% survival of the cells (45). Therefore, methods
involving immunochemical detection of cis-DDP-DNA
adducts are being developed (46). We have raised an-
tibodies against the synthetic haptens cis-DDP-dGuo-
dGMP and cis-DDP-Guo-GMP, coupled to bovine serum
albumin. With these antibodies, several major cis-DDP-
DNA adducts can be quantitatively determined in very
small amounts. An example of the separation and im-
munochemical analysis of cis-DDP-DNA adducts in a
digest of (in vitro)-treated salmon sperm DNA is given
in Figure 2. By means of AAS, the presence of four
different cis-DDP-containing (oligo)nucleotides could be
established (Fig. 2A). Two of these adducts could be
measured with high sensitivity in an immunoassay, with
the two antisera mentioned above (Fig. 2B). Recently,
we have started experiments to analyze the pattern of
cis-DDP-induced adducts in DNA from human blood
cells, i.e., from patients treated with cisplatin. With
AAS, no platinum-containing material could be de-
tected. However, with the method illustrated in Figure
2, the presence of the adducts Pt-GG and G-Pt-G (Fig.
2A) could be unambiguously demonstrated. With anti-
bodies raised against cis-DDP-DNA (46)-which prob-
ably recognize the Pt-GG adduct in intact DNA-cis-
DDP adducts could also be detected in DNA from nu-
cleated blood cells of patients receiving cis-DDP (47).

Detection of DNA Damage in Single
Cells by Means of
Immunofluorescence Microscopy
Methods for biomonitoring human exposure must be

very sensitive because the amount ofDNA damage may
be extremely small and because the amount of sample
available is limited. On the other hand, the methods
should be rapid and convenient to be suitable for large-
scale screening purposes. Recently, several methods
have been developed to measure DNA damage in in-
dividual cells with specific antibodies against DNA ad-
ducts, in combination with fluorescence detection. These
methods involve the analysis of fixed cells, either on
glass slides or free in solution. Although the latter
method-flow cytometry-in general has been limited
to the analysis of cell surface antigens, recent devel-
opments indicate that intracellular detection of specific
DNA damage will become possible (48). The other
method, immunofluorescence microscopy, involves im-
mobilization of cells or tissue slices on glass slides, den-
aturation ofDNA and detection of adducts with specific
anti-adduct antibodies and second antibodies carrying
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FIGURE 2. Chromatographic separation and immunochemical de-
tection of cis-DDP-adducts. A digest of cis-DDP-treated salmon
sperm DNA (15 jig) was chromatographed on an anion exchange
column (MonoQ, Pharmacia, pH 8.8). The amount of platinum was
measured in each fraction by means ofAAS (panel A). The position
of four identified platinum-containing adducts is indicated (44).
Arrows indicate the elution position of the four common mono-
nucleotides. In a competitive ELISA, each fraction was analyzed
for the presence of platinum-containing adducts (panel B). The
response is expressed as the dilution of the fractions, necessary
to obtain 50% inhibition of antibody binding (ID,5). The two anti-
sera used in this experiment (e,o) do not recognize the Pt-G and
the Pt-AG adduct. Experimental details will be published else-
where.

a fluorescent marker or an enzyme that converts a sub-
strate into a precipitating, colored product. With this
method, the morphology of the cells may be preserved,
allowing the localization of specific DNA damage in dis-
tinct cell types (49). We have focused attention on the
development of this method for the detection, with highly
specific polyclonal antibodies, of AAF-adducts in cells
treated with N-acetoxy-AAF (N-AcO-AAF), a reactive
metabolite of 2-AAF. An advanced computer system
designed for quantitation of the fluorescence signals is
connected with the fluorescence microscope. Experi-
mental details and the initial results obtained with this
system will soon be published. An example of a dose-
response curve constructed with computer-generated

data is shown in Figure 3. We have also used monoclonal
antibodies in this approach to detect AAF adducts at
the single-cell level. Several monoclonals, isolated some
time ago (31), failed to yield specific fluorescence signals
on N-AcO-AAF-treated cells. This was ascribed to the
fact that these antibodies had a 30-fold lower affinity
constant than did the anti-AAF antiserum (from rabbit)
which yielded a positive response. Recently, a large
collection of different monoclonal antibodies was ob-
tained by isolation, with the rosetting technique (Fig.
1), of hybrid cells producing antibodies directed against
AAF-guanosine adduct. More than 50 cell culture su-
pernatants were tested in the immunofluorescence mi-
croscopy system to visualize the adduct in mammalian
cells treated with a rather high dose of N-AcO-AAF.
Several of these yielded specific fluorescence signals.
The affinity constants of the antibodies, as determined
in a competitive radioimmunoassay (50), varied between
2 x 107 and 5 x 109 L/mole. Of the monoclonals that
were negative in the single-cell assay, some also had a
high affinity constant. It should be noted that all of the
antibodies tested in this system recognize the free AAF-
guanosine adduct or/and AAF-modified DNA, immo-
bilized on an ELISA plate.
These findings illustrate the importance of a proper

screening system to select antibodies with binding prop-
erties that are optimal for the problem under study.

Discussion
Biomonitoring of human exposure to environmental

genotoxic agents requires advanced methods to detect
very small quantities of DNA adducts in limited amounts
of sample. Because environmental exposure involves
nonradioactive compounds, the recently developed im-
munochemical techniques that are able to detect non-
labeled adducts with a high degree of sensitivity, will
be very useful for biomonitoring purposes.

Chemically well-defined adducts have been used in
immunogens to obtain highly specific antibodies and var-
ious types of sensitive immunoassays are now available
to detect and quantitate the DNA adducts. The level of
sensitivity that is achieved in these experiments war-
rants the expectation that monitoring of human expo-
sure to genotoxic agents will become feasible (51). Recent
developments described in this paper will enable us to
analyze DNA damage, even quantitatively, in a limited
number of blood cells. This is important in view of the
need of large-scale screening methods for biomonitoring
purposes. It should be noted that this immunochemical
approach is feasible only in those instances where ex-
posure results in the formation of known or identifiable
adducts. Antibodies directed against groups of related
DNA adducts would be useful for monitoring exposure
to certain classes of chemicals (e.g., alkylating agents,
polynuclear aromatics), without the need ofknowing the
identity or relative abundance of each separate com-
pound. Monitoring of exposure to suspected but oth-
erwise wholly unknown chemicals could be first
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FIGURE 3. Quantitative immunofluorescence microscopy of DNA-
adducts formed in cultured human fibroblasts treated with N-
acetoxy-2-acetylaminofluorene. The cells were grown on cover-

slips, treated with the agent for 1 hr at 37°C, washed and fixed
with methanol/acetone. The preparations were treated with RNAse,
proteinase K and alkali (0.07 N NaOH for 2 min). The slides were
then incubated with anti-GuO-AAF antiserum (31) and FITC-la-
beled second antibody. The fluorescence was measured at the sin-
gle-cell level (each point is the average of 35-40 cells).

approached with the postlabeling method described by
Randerath (24). This method is nonspecific for the chem-
ical and may be able to pick up the formation of any
kind of adduct, under appropriate conditions. After iso-
lation and identification of seemingly important, pre-
dominant or persistent adducts, as revealed by this
method, the immunochemical approach could be chosen
for further analysis.
When biomonitoring data are used only to establish

effective exposure (i.e., resulting in damage in nuclear
DNA), any DNA adduct that persists for a reasonable
length of time may serve as a dose monitor. For mon-
itoring of human exposure, the most readily available
source ofDNA are the white blood cells. Demonstration
of the presence of DNA adducts in the blood is quali-
tative proof that exposure to a genotoxic agent has taken
place. However, the presence of adducts in blood cells
gives no clue about exposure of target organs such as
liver and lung, which are-for obvious reasons-not
readily available for experimentation. Furthermore, the
absence of detectable DNA adducts in the white blood
cells does not disprove exposure. Adducts may be rap-
idly removed from blood cell DNA or the reactive agent
may not be able to reach the blood cells in sufficient
quantity. Additional data-e.g., from in vitro exposure
of human blood cells or from animal experiments-are
required to study this problem in more detail. Our ex-

periments with rats treated with 2-AAF indicate that
no detectable amount of AAF-adducts was present in
DNA isolated from white blood cells, even after admin-
istration of rather large doses of the carcinogen. In this
case, the amount of adducts in blood cell DNA does not
reflect at all the extent of exposure at the target organ,
i.e., the liver.

It is clear that a negative result in a biomonitoring
assay on blood cell DNA is not necessarily indicative of

a nonexposure or "safe" situation. At the same time,
additional research is necessary to provide a basis for
interpretation of positive biomonitoring data in terms
of a possible health risk for the exposed groups or in-
dividuals. Experiments with animals, in which addi-
tional data can be obtained with destructive methods,
will remain indispensable, if risk assessment is the pri-
mary goal of biomonitoring. Such experiments may re-
veal which of the various adducts is responsible for the
induction of the genetic effects observed (i.e., the key
lesion). Although total adduct formation in DNA in some
cases could not be correlated with tumor formation (17),
it may well be that a specific type of lesion among the
various adducts that are induced is directly related to
the development of neoplasia or the occurrence of her-
itable disorder (52). Total adduct formation, e.g., meas-
ured in various organs after treatment of an animal with
radiolabeled genotoxicants, does not necessarily reflect
the relative abundance of these key lesions, because
various types of damage may follow different, organ-
specific kinetics of formation and repair. The relative
amount of such lesions may thus be time-dependent.
Among the various adducts induced in DNA of cisplatin-
treated mammalian cells, the level of interstrand cross-
links-assumed to be harmful lesions-does not run
parallel with the total platination when measured at
various intervals after the treatment (45). Comparison
of in vivo animal data, e.g., on the fate of the key lesion
and the ensuing genetic effect, with in vitro results
obtained with animal and human cells in culture may
allow an estimation of the expected effects in humans
in vivo (53). The immunochemical methods enable us to
approach these problems with great precision, because
adducts of various types can be studied separately when
the appropriate antibodies are available.

Recent data concerning mutational events at partic-
ular sites on certain chromosomes indicate that not only
the mere presence of a specific lesion, but also its lo-
cation in a certain region within the genome may be of
importance for the development of genetic effects (54).
The presence of a chemical lesion induced by the car-
cinogen benzo(a)pyrene diol epoxide was shown to con-
vert a proto-oncogene into a transforming oncogene (55).
Recombinant DNA techniques could be combined with
sensitive immunochemical detection methods to eluci-
date the pattern of damage induction in various regions
of the DNA, e.g., within specific fragments generated
by digestion with restriction enzymes (56). This would
contribute to our knowledge of the mechanism of
carcinogenesis.
Exposure of humans to genotoxic agents offers the

opportunity to study directly the human in vivo situa-
tion. Treatment with genotoxic cytostatics (e.g., plat-
inum-containing antitumor compounds) generally occurs
under well defined conditions with respect to the pa-
tient's diet, smoking habits and other medication. Sev-
eral of these drugs have been identified as potential
carcinogens, while some have been shown to induce sec-
ond tumors in patients treated with chemotherapy (57).
Material obtained from these people may therefore be
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used to study the possible relation between certain DNA
adducts and human cancer induction. In general, studies
dealing with human exposure may be useful to develop
methods for extrapolation of animal data to man and for
calibration purposes.
The immunochemical approach thus appears to be a

powerful tool in solving the problems encountered in
monitoring human exposure to genotoxic agents. The
current developments in this field may ultimately con-
tribute to a sound scientific basis for the assessment of
health risks for the exposed individual.
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